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2006, Science

Layer-wise initialization

2010, ICML

Citation: 15200+ Citation: 13000+

x
         y

Loss

• The gradient explosion or vanishing problem

ReLU

Linear nonlinear

[Hinton and  Salakhutdinov,  2006; Nair and  Hinton, 2010; Ioffe and  Szegedy, 2015] 
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BN: Key module of DNNs

• Key module in current the state-of-the-art network architectures 

Transformer, 

NeurIPS 2017

Residual Network, 

CVPR 2016

Citation: 81000+ Citation: 22000+

DenseNet, 

CVPR 2017
Citation: 16000+

[He et al,  2016; Ba et al, 2016; Huang et al, 2017; Vaswani et al, 2017] 
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Recently Papers Involving Normalization

• Statistics of publications on main conferences between 2020 to 2021

– ICLR, AAAI, CVPR, ICML, ECCV, NeurIPS:  77+

2020 2021

ICLR 4+ 6+

AAAI 7+ 6+

CVPR 11+ 15+

ICML 5+ 7+

ECCV 7+

NeurIPS 9+
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Some questions

• Why so many normalization variants? What are the main 

motivations behind them? And how can we present a taxonomy?

• How can we reduce the gap between empirical success of 

normalization techniques and our theoretical understanding of them?

• What recent advances have been made in designing/tailoring 
normalization techniques for different tasks, and what are the main 
insights behind them?
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Disclaimers

• Inevitably miss important related work

• Citations are only representative examples

• There are no consistent understandings of 

normalization, this is one

Paper list related:  https://github.com/huangleiBuaa/NormalizationSurvey

Survey paper: “Normalization Techniques in Training DNNs: Methodology, Analysis and Application,” 
arXiv:2009.12836
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Supervised Learning

• Dataset D={X, Y}
– Input: X

– Output: Y

– Learning: Y  𝐹 𝑋 or P 𝑌|𝑋

• Main types of learning models
– Non-parametric model 

• Y=F(X; 𝑥 , 𝑥 …𝑥𝑛)

– Parametric model
• Y=F(X; 𝜃)

• Training (Fitting) : min𝜃 ℒ  𝐸𝐷 ℓ 𝐹 𝑋; 𝜃 , ෠𝑌 
• Generalization

Y=F(X) P(Y|X)



Normalization

• Definition of normalization 

– In statistics: adjustments of values or distributions in statistics

– In image processing: changing the range of pixel intensity values

– In data processing: general reduction of data to canonical form 

• Definition of  normalization in this tutorial

– Given a set of data 𝔻  {x 𝑖 }𝑖= 
𝑁 , the 

normalization operation is a function Φ: x ⟼ ොx, 
which ensures that the transformed data ෡𝔻  
{ොx 𝑖 }𝑖= 

𝑁 has certain statistical properties.  

ො𝐱  
𝐱−𝝁

𝝈



Motivation of Normalizing Input

• Improve the effects of learning

– Non-parameter models (KNN, Kernel SVM)

– Distance/ Similarity

• Improve optimization efficiency

– Parametric model (logistic regression)

– Update parameters iteratively

𝑤 

𝑤 
0 < 𝑥 < 2

0 < 𝑥 < 0.5

𝑤 

𝑤 0 < 𝑥 
′  𝑥 /2 < 1

0 < 𝑥 
′  𝑥 ∗ 2 < 1

ℒ 𝑤 , 𝑤 ) ℒ 𝑤 , 𝑤 )

y  w x + w x +b, ℒ = y − ොy  

𝜃  {𝑤 , 𝑤 }

𝜃𝑡+ ← 𝜃𝑡 − η
𝜕ℒ

𝜕𝜃𝑡



Normalizing Input Benefits Optimization

• Linear regression: ℒ 𝐹 𝐱 , ො𝑦  
 

 
 𝑊𝐱 − ො𝑦  

ℒ 𝑊  
1

2
 𝑊𝑇CW − 2𝐴𝑇𝑊 + 𝑏 

– Where C=
 

𝑁
σ𝑖= 

𝑁 𝐱𝑇 𝐱 is the covariance matrix

– Gradient:  
𝜕ℒ

𝜕𝑊
=σ𝑖= 

𝑁 𝐱 𝑦 − ො𝑦 

– Hessian matrix:  H=
𝜕ℒ2

𝜕𝑊𝜕𝑊
 𝐶

…
..

x

W y

[LeCun et al, NIPS 1990; LeCun et al, NN 1998; Wiesler et al, NIPS 2011] 



Normalizing Input Benefits Optimization

• Learning dynamics are controlled by the spectrum of curvature matrix 
(Hessian 𝑯)

– 𝜆𝑚𝑎𝑥 𝑯 : 

• Optimal learning rate: 𝜂  
 

𝜆𝑚𝑎𝑥 𝑯 

• Diverge if 𝜂 >
 

𝜆𝑚𝑎𝑥 𝑯 :

– Condition number 𝜅  
𝜆𝑚𝑎𝑥 𝑯 

𝜆𝑚𝑖𝑛 𝑯 
control the iterations required for convergence

• Hessian of multiple output: 

𝑯  𝔼𝒟   𝑻 ⊗ 𝑰

Second Order Properties of Error Surfaces: Learning Time and Generalization [Lecun et al 1990.]

…
..

x

W y



Towards Normalizing Activations of DNNs

  − 
   

        

  
    

…
…

𝒚

• Difficulty of analysis for DNNs
– Nonlinear model

– X is only linearly connected by 𝑊   ; 

Optimization is over 𝜃, not 𝑊   only

𝜃  𝑊  ,𝑊  , … ,𝑊 𝐾

• What we can exploit?

– Layer-wise structure

– ℎ i is linearly connected by 𝑊 𝑖+  

Normalizing 
Activations 



Intuitive Motivation for Normalizing Activation

• Proximal back-propagation  

x    𝑊 z0    𝑊 𝒛 

𝒛𝐾−   𝐾−   𝐾−  

 𝐾  𝑊𝐾𝒛𝐾− y

𝜕ℒ

𝜕𝒛𝐾− 

𝜕ℒ

𝜕𝒛 

𝒛        
……

𝜕ℒ

𝜕𝒛 

……

ො𝒛𝐾−  𝒛𝐾− + 𝜇
𝜕ℒ

𝜕𝒛𝐾− 

……

ො𝒛  𝒛 + 𝜇
𝜕ℒ

𝜕𝒛 

∇ 𝐾

ො𝒛  𝒛 + 𝜇
𝜕ℒ

𝜕𝒛 

• Back-match propagation

[Frerix et al , ICLR 2018; Zhang et al, NeurIPS 2018; Huang et al, ECCV 2020]



Theoretic Analysis for Normalizing Activation

• Foundation: approximating FIM using the Kronecker product (K-FAC)

– Assumption1: weight-gradients in different layers are assumed to be uncorrelated

– Assumption2: the input and output-gradient in each layer are approximated as 

independent

• Fisher Information Matrix (FIM): 𝑭  𝔼𝑝 𝑥 , 𝑞 𝑦 𝑥  
𝜕ℓ

𝜕𝜃

𝑇 𝜕ℓ

𝜕𝜃
 

  − 
   

        

  
    

…
…

ℝ𝒅𝟐 × 𝒅𝟐ℝ 𝒅𝟐 ×  𝒅𝟐

ℝ𝒅 ×𝒅

Optimizing Neural Networks with Kronecker-factored Approximate Curvature [Martens and Grosse, 2015]



Construct Well-Conditioned Landscape

• Denoting Σ𝑥  𝔼𝑝 𝑥  𝑥𝑥𝑻 and Σ∇ℎ  𝔼𝑝 𝑥 ,𝑞 𝑦 𝑥  
𝜕ℓ

𝜕ℎ

𝑇 𝜕ℓ

𝜕ℎ
 

• Criteria

– 1. The statistics of the layer input (e.g., Σ𝑥 ) and output-gradient (Σ∇ℎ) across 
different layers are equal (across layer)

– 2. Σ𝑥 and Σ∇ℎ are well conditioned (in layer)

• Initialization techniques: designed to satisfy Criteria 1 and/or 2 during 

initialization

– Arxiv-Init [Glorot and Bengio, 2010], He-Init [He et al, 2015]: for Criteria 1

– Orthogonal Initialization [Saxe et al, 2014] : for Criteria 1 and 2

• General goals of “normalization” in DNNs: Controlling the distribution of 

the activations/output-gradients during training. 



Normalization Operation

• Basic normalization operations benefits the optimization

– Centering

– Scaling

– Decorrelating

• Combine above

– Standardization

– Whitening Whitening

Cov(X)=𝜎I

𝑯  𝔼𝒟   𝑻 ⊗ 𝑰

Efficient Back-propagation[Lecun et al, 1998. ]



General Picture of Normalization in DNNs
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