

CVPR 2021 Tutorial

Normalization Techniques in Deep Learning: Methods, Analyses and Applications

Lei Huang Beihang University, Beijing, China

Outline

01. Motivations of Normalization Techniques

02. Introduction of Normalization Methods

03. Analyses of Normalization

04. Applications of Normalization

Outline

Normalize Activation

By population

statistics

As functions

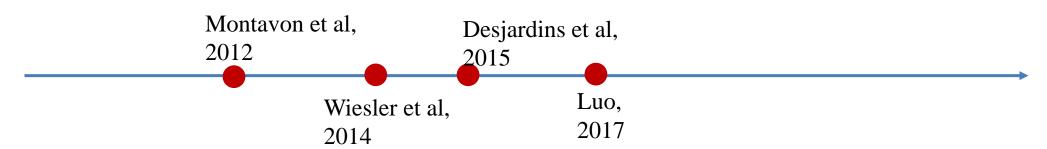
Normalize Weight Normalize Gradient

Normalizing activations

• Machine learning/Optimization community:

Population statistics of a dataset

$\sum_{\mathbf{x}}$	=	$\mathbb{E}_{n(x)}$	(xx^T))
л		$P(\lambda)$		_



Normalization by Population Statistics

- Centering the activation
 - Montavon et al, 2014; Wiesler et al, 2014

$$\hat{\mathbf{x}} = \mathbf{x} + \widehat{\boldsymbol{\mu}}$$

 $\hat{\mu}$ is the mean of activation over the training dataset;
Parameter to be estimated

- Standardizing the activation: centering + scaling
 - Wiesler et al, 2014

$$\hat{\mathbf{x}} = \underbrace{\frac{\mathbf{x} - \hat{\boldsymbol{\mu}}}{\hat{\boldsymbol{\sigma}}}}$$

 $\hat{\sigma}$ is the standard deviation of activation over the training dataset;

Parameter to be estimated

- Whitening the activations
 - Desjardins et al 2015; Luo, 2017

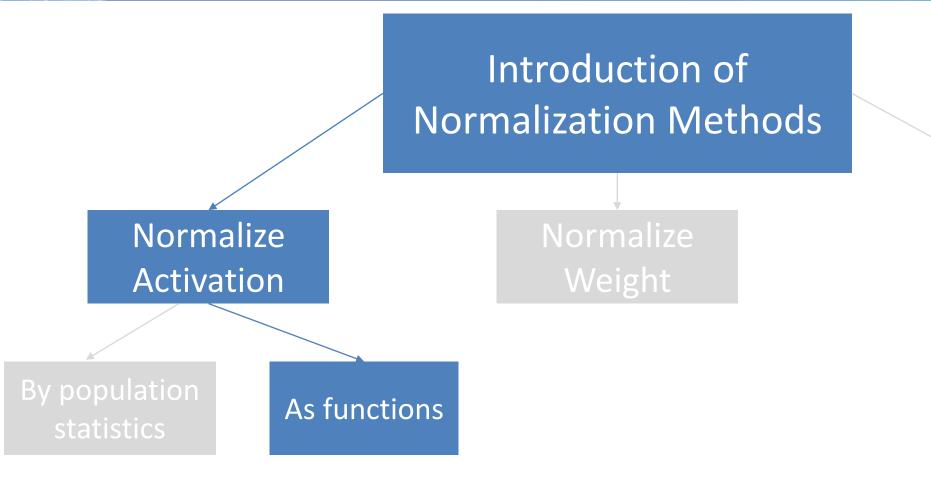
$$\widehat{x}_I = \widehat{\Sigma}^{-\frac{1}{2}}(\mathbf{x} - \widehat{\boldsymbol{\mu}})$$

 $\hat{\Sigma}^{-\frac{1}{2}}$ is the whitening matrix of activation over the training dataset; Parameter to be estimated

Normalization by Population Statistics

- Advantages
 - Well exploit the beneficial property of normalization in optimization
- Drawbacks
 - Training instability
 - The estimation is not accurate (sampled data)
 - Internal covariant shift (the distribution of activation varying with training progressing)
 - Can not be used to large networks
 - An inaccurate estimation of population statistics will be amplified as the layers increase

Outline



Normalize Gradient

Normalizing activations

Machine learning/Optimization community:

Population statistics of a dataset

$$\Sigma_{x} = \mathbb{E}_{p(x)} \left(x x^{T} \right)$$

Montavon et al, 2012		Desjardins et al, 2015				
	Wiesler et al, 2014		Luo, 2017			

Computer vision community:

Local statistics in an sample

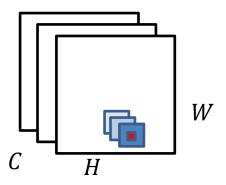
Krizhevsky et al, 2012 Jarrett et al, Ren et al, Ortiz et al, 2009 2017 2020

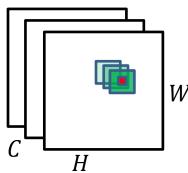
Local Normalization in a Sample

Local normalization

- Local contrast normalization [Jarrett et al, ICCV 2009]
- Local response normalization [Krizhevsky et al, NeurIPS 2012]
- Divisive normalization [Ren et al, ICLR 2017]
- Local context normalization [Ortiz et al, CVPR 2020]

Given an example $X \in \mathbb{R}^{C \times H \times M}$





Local Normalization in a Sample

Advantage

- Training is somewhat stable due to back-propagating through normalization
- The visual contrast invariant property may benefit generalization

• Limits

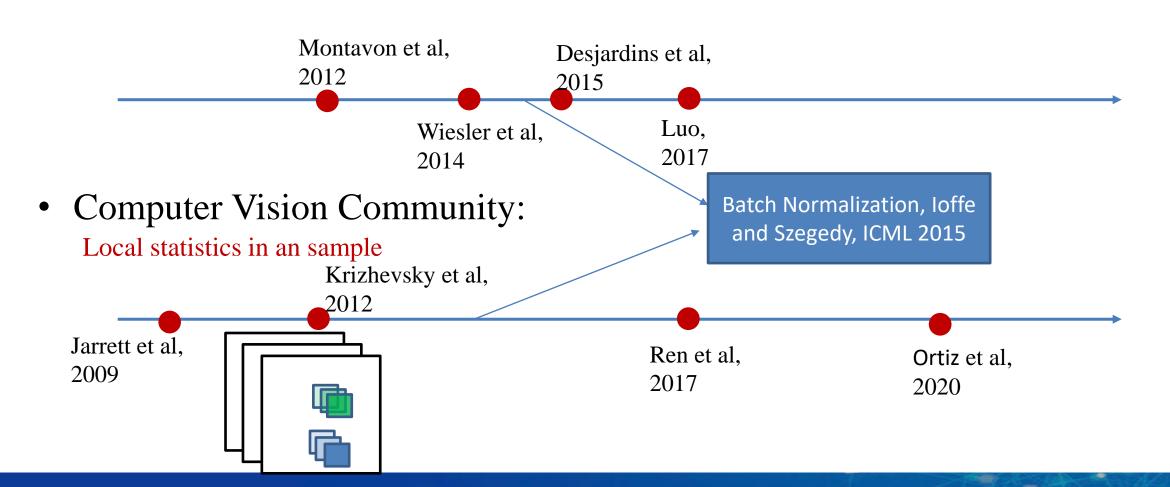
- Specific to visual data (feature maps)
- May change the representation ability and reduce the discriminative information
- It is not clear whether benefits optimization

Normalizing activations

• Machine learning/Optimization community:

Population statistics of a dataset

$$\Sigma_{x} = \mathbb{E}_{p(x)} \left(x x^{T} \right)$$



Batch Normalization (BN)

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$

Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Extra learnable scale and bias

Normalize over mini-batch data

Back-propagate through the transformation

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

Batch Normalization (BN)

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$

Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

Extra learnable scale and bias

Normalize over mini-batch data mini-batch statistics for training and population statistics for inference

$$\begin{cases} \hat{u} = (1 - \lambda)\hat{u} + \lambda u, \\ \hat{\sigma}^2 = (1 - \lambda)\hat{\sigma}^2 + \lambda \sigma^2, \end{cases}$$

Back-propagate through the transformation

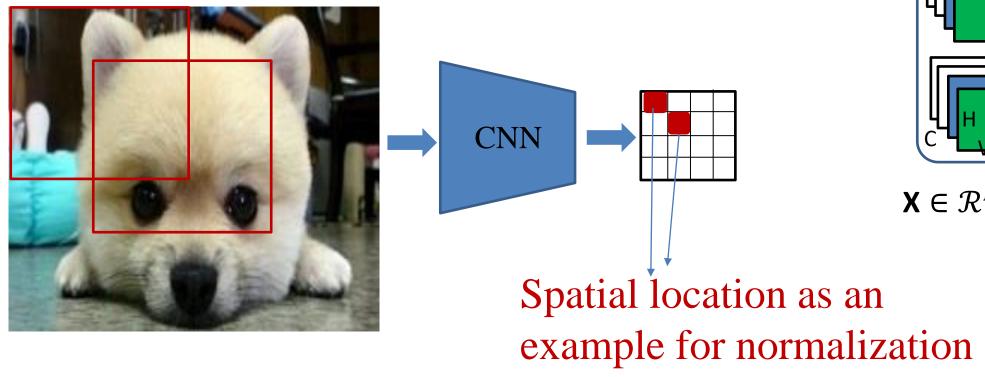
$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

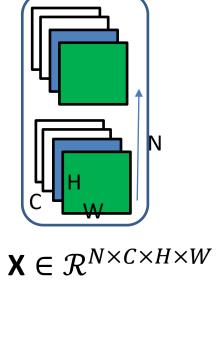
$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

Batch Normalization (BN)

- Extension to CNN input
 - Jarrett et al, 2009; Gulcehre and Bengio, 2013



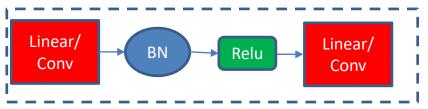


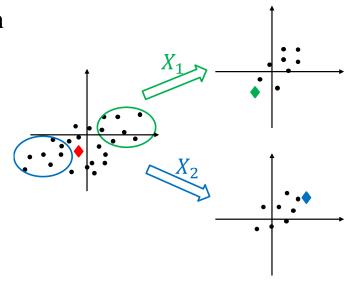
Batch Normalization: Property

- For accelerating training
 - Stable training
 - Weight scale invariant: not sensitive for weight initialization

$$BN(Wu) = BN((aW)u)$$

- Better conditioning
 - Can use large learning rate
- For generalization
 - Introduced stochasticity
 - Mini-batch dependence during training
 - Training-test discrepancy
 - Scale invariant representation



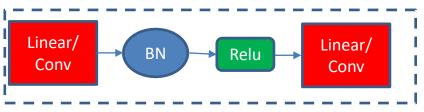


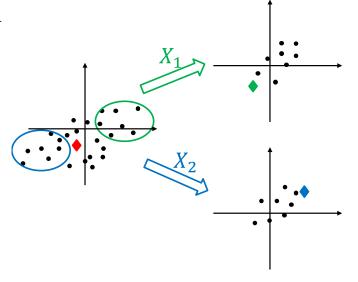
Batch Normalization: Property

- For accelerating training
 - Stable training
 - Weight scale invariant: not sensitive for weight initialization

$$BN(Wu) = BN((aW)u)$$

- Better conditioning
 - Can use large learning rate
- For generalization
 - Introduced stochasticity
 - Mini-batch dependence during training
 - Training-test discrepancy
 - Scale invariant representation





- ➤ Independent population statistics or sharing statistics in RNN?
- Data are from different domains
- > Small batch size problem

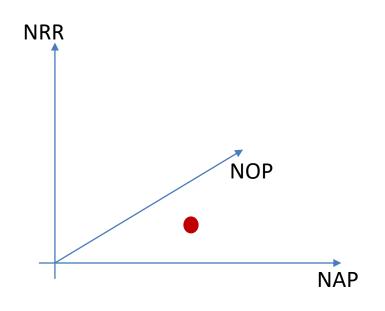
Outline

- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

A Framework for Decomposing Normalization

• The framework

- Normalization Area Partitioning (NAP): which area to calculate the 'statistics'
- Normalization Operation (NOP): what kind of normalization operation?
- Normalization Representation Recovery (NRR)



Algorithm 1 Framework of algorithms normalizing activations as functions.

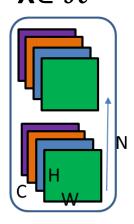
- Input: mini-batch inputs X ∈ ℝ^{d×m×h×w}.
 Output: X ∈ ℝ^{d×m×h×w}.
- 3: Normalization area partitioning: $X = \Pi(X)$.
- 4: Normalization operation: $\mathbf{X} = \Phi(\mathbf{X})$.
- 5: Normalization representation recovery: $\widetilde{\boldsymbol{X}} = \Psi(\widehat{\boldsymbol{X}})$.
- 6: Reshape back: $\widetilde{\mathbf{X}} = \Pi^{-1}(\widetilde{\mathbf{X}})$.

A Framework for Decomposing Normalization

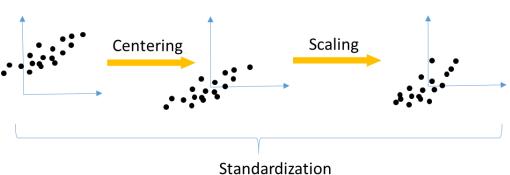
Batch Normalization

- NAP:
$$X = \Pi_{BN}(\mathbf{X}) \in \mathbb{R}^{d \times mhw}$$
.

$$\mathbf{X} \in \mathcal{R}^{N \times C \times H \times W}$$



- NOP:
$$\widehat{X} = \Phi_{SD}(X) = \Lambda^{-\frac{1}{2}}(X - \mathbf{u}\mathbf{1}^T).$$



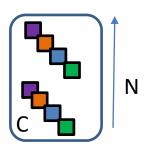
- NRR:
$$\widetilde{X} = \Psi_{AF}(\widehat{X}) = \widehat{X} \odot (\gamma \mathbf{1}^T) + (\beta \mathbf{1}^T)$$

Outline

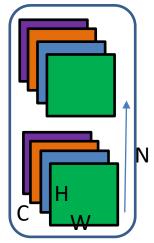
- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Normalization Area Partitioning (NAP)
 - Normalization Operation (NOP)
 - Normalization Representation Recovery (NRR)
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

Normalization Area Partitioning

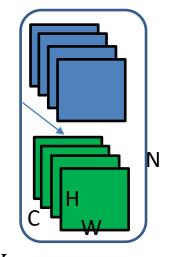
• MLP input: $X \in \mathcal{R}^{N \times C}$

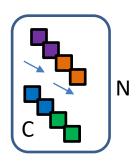


Batch Norm

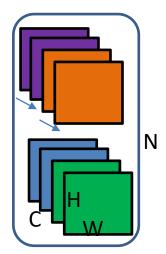


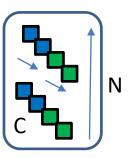
N Layer Norm



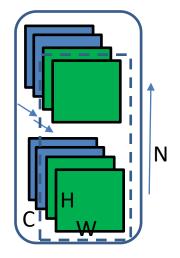


Group Norm





Batch Group Norm

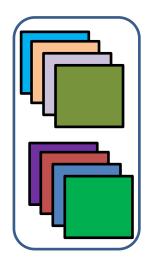


• CNN input: $\mathbf{X} \in \mathcal{R}^{N \times C \times H \times W}$

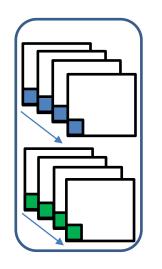
Normalization Area Partitioning

• CNN Input: $X \in \mathcal{R}^{N \times C \times H \times W}$

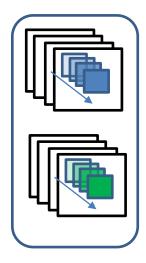
Instance Norm



Position Norm



Region Norm



Outline

- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Normalization Area Partitioning (NAP)
 - Normalization Operation (NOP)
 - Normalization Representation Recovery (NRR)
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

Normalization Operation

• Batch Whitening (BW)

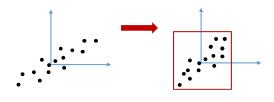
Activation distribution

Standardization:

$$\widehat{X} = \varphi(X) = \left(diag(\Sigma)\right)^{-\frac{1}{2}} (X - \mu \mathbf{1}^T)$$

Covariance

matrix



 $diag(\hat{X}\hat{X}^T) = I$

Whitening:

$$\hat{X} = \varphi(X) = \sum_{i=1}^{T} (X - \mu 1^{T})$$

 $\widehat{X}\widehat{X}^T = I$

Standardization is a special case of whitening

Whitening further improver conditioning over standardization

Normalization Operation

Batch Whitening (BW)

> Forward

$$\mu = \frac{1}{m} \sum_{j=1}^{m} \mathbf{x}_j$$

$$\Sigma = \frac{1}{m} \sum_{j=1}^{m} (\mathbf{x}_j - \mu)(\mathbf{x}_j - \mu)^T$$

$$\Sigma = \mathbf{D}\Lambda\mathbf{D}^T$$

$$\mathbf{U} = \Lambda^{-1/2} \mathbf{D}^T$$

$$\tilde{\mathbf{x}}_i = \mathbf{U}(\mathbf{x}_i - \mu)$$

$$\hat{\mathbf{x}}_i = \mathbf{D}\tilde{\mathbf{x}}_i$$

> Backward

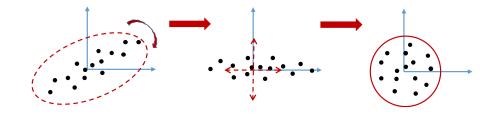
$$\begin{array}{ll} \frac{\partial L}{\partial \tilde{\mathbf{x}}_{i}} &= \frac{\partial L}{\partial \hat{\mathbf{x}}_{i}} \mathbf{D} \\ \frac{\partial L}{\partial \mathbf{U}} &= \sum_{i=1}^{m} \frac{\partial L}{\partial \tilde{\mathbf{x}}_{i}}^{T} (\mathbf{x}_{i} - \mu)^{T} \\ \frac{\partial L}{\partial \Lambda} &= (\frac{\partial L}{\partial \mathbf{U}}) \mathbf{D} (-\frac{1}{2} \Lambda^{-3/2}) \\ \frac{\partial L}{\partial \mathbf{D}} &= \frac{\partial L}{\partial \mathbf{U}}^{T} \Lambda^{-1/2} + \sum_{i=1}^{m} \frac{\partial L}{\partial \hat{\mathbf{x}}_{i}}^{T} \tilde{\mathbf{x}}_{i}^{T} \qquad \text{[Ionescu et al, ICCV 2015]} \\ \frac{\partial L}{\partial \Sigma} &= \mathbf{D} \{ (\mathbf{K}^{T} \odot (\mathbf{D}^{T} \frac{\partial L}{\partial \mathbf{D}})) + (\frac{\partial L}{\partial \Lambda})_{diag} \} \mathbf{D}^{T} \\ \frac{\partial L}{\partial \mu} &= \sum_{i=1}^{m} \frac{\partial L}{\partial \tilde{\mathbf{x}}_{i}} (-\mathbf{U}) + \sum_{i=1}^{m} \frac{-2(\mathbf{x}_{i} - \mu)^{T}}{m} (\frac{\partial L}{\partial \Sigma})_{sym} \\ \frac{\partial L}{\partial \mathbf{x}_{i}} &= \frac{\partial L}{\partial \tilde{\mathbf{x}}_{i}} \mathbf{U} + \frac{2(\mathbf{x}_{i} - \mu)^{T}}{m} (\frac{\partial L}{\partial \Sigma})_{sym} + \frac{1}{m} \frac{\partial L}{\partial \mu} \end{array}$$

Decorrelated Batch Normalization [Huang et al, CVPR 2018]

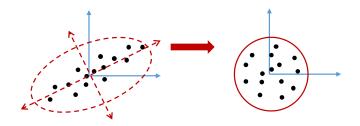
Batch Whitening

- Whitening
 - PCA whitening not work

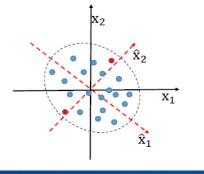
$$G_{PCA} = \Lambda^{-\frac{1}{2}} D^T, \qquad D\Lambda D^T = \Sigma$$

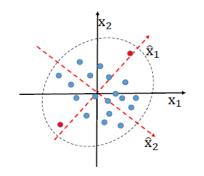


- ZCA whitening work $G_{ZCA} = D\Lambda^{-\frac{1}{2}}D^{T}$



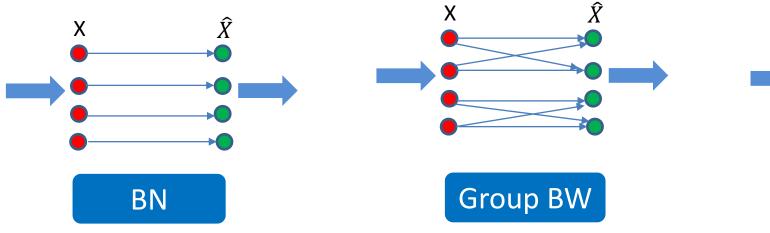
PCA cause stochastic axis swapping



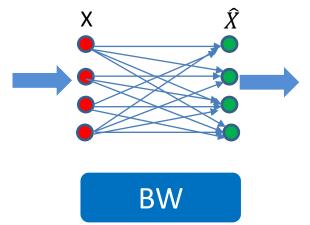


Control the Extent of Batch Whitening

- What's the problem of full whitening
 - Computational cost
 - Overmuch constraints on \hat{X} ($\hat{X}\hat{X}^T = I$)
 - Difficulty in estimating the population statistics
- Group based batch whitening







Control the Extent of Batch Whitening

• Newton's iteration to calculate whitening matrix

$$\widehat{X} = \varphi(X) = \Sigma^{-\frac{1}{2}}(X - \mu \mathbf{1}^T)$$

Normalize eigenvalues: $\Sigma_N = \Sigma/tr(\Sigma)$.

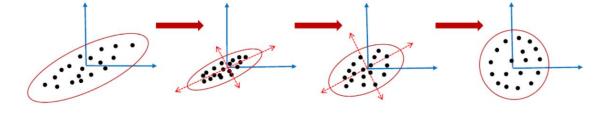
$$\Sigma_N = \Sigma/tr(\Sigma)$$

Iteration:

$$\mathbf{P}_0 = \mathbf{I}.$$
 for $k=1$ to T do $\mathbf{P}_k = \frac{1}{2}(3\mathbf{P}_{k-1} - \mathbf{P}_{k-1}^3\Sigma_N)$ end for

Whitening matrix:
$$\Sigma^{-\frac{1}{2}} = \mathbf{P}_T / \sqrt{tr(\Sigma)}$$

Activation distribution



Optimization landscape

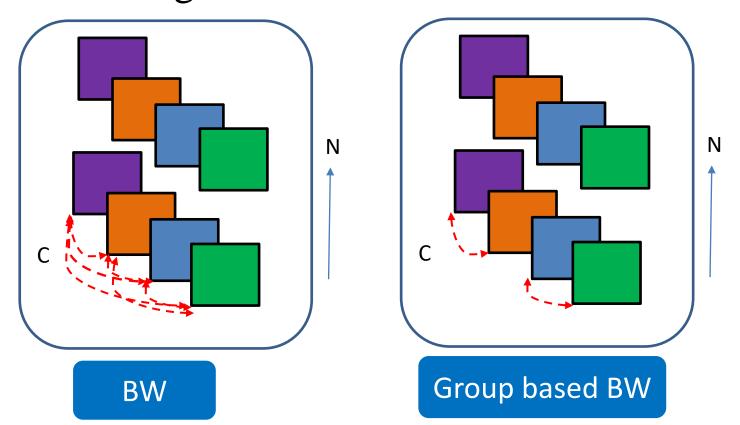
Batch Whitening

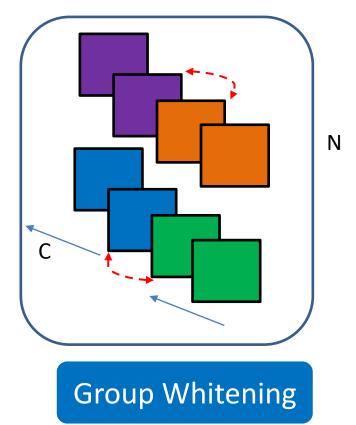
- Advantages over standardization
 - Better conditioning theoretically
 - Probably better generalization (the amplified stochasticity) by controlling the extent of whitening

- Disadvantages
 - Computational costs → Group based, Newtown's iteration
 - Numerical instability Cholesky decomposition, Newtown's iteration
 - More difficulty in ensuring the training and inference consistency

Group whitening

• Exploiting the advantages of whitening and avoid the disadvantages of normalization over batch





Normalization Operation

Variations of standardization

$$\hat{x}^{(i)} = \frac{x^{(i)} - u}{\sqrt{\sigma^2 + \epsilon}}$$

$$-L^2$$
 Norm (BN): $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - u)^2$

$$-L^1$$
 Norm: $\sigma = \frac{1}{m} \sum_{i=1}^m |x^{(i)} - u|$ more efficient and numerical stability in

$$-L^{\infty} \operatorname{Norm}: \sigma = \max_{i} |x^{(i)}|$$

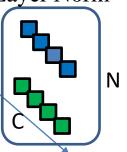
more efficient and numerical stability in a low precision implementation

– More general
$$L^p$$
: $\sigma = \frac{1}{m} \sqrt[p]{\sum_{i=1}^m (x^{(i)})^p}$

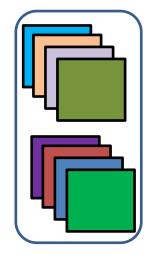
Normalization Operation

- Reduced standardization
 - Centering only (Mean only BN)
 - Scaling only

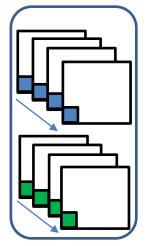
Root Mean Square Layer Norm



Filter Response Normalization



Instance Normalization Pixel Normalization



Position Normalization

Standardization:

Layer

Normalization

Outline

- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Normalization Area Partitioning (NAP)
 - Normalization Operation (NOP)
 - Normalization Representation Recovery (NRR)
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

Normalization Representation Recovery

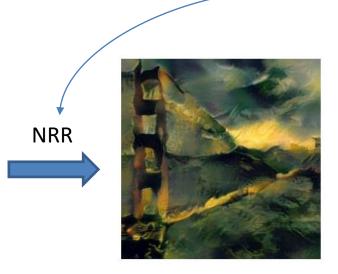
Why NRR

- Recover the representation
- Edit the statistical distribution

NOP:
$$\widehat{\boldsymbol{X}} = \Phi_{SD}(\boldsymbol{X}) = \Lambda^{-\frac{1}{2}}(\boldsymbol{X} - \mathbf{u}\mathbf{1}^T)$$

NRR:
$$\widetilde{\boldsymbol{X}} = \Psi_{AF}(\widehat{\boldsymbol{X}}) = \widehat{\boldsymbol{X}} \odot (\gamma \boldsymbol{1}^T) + (\beta \boldsymbol{1}^T)$$

Remove statistics



Add statistics

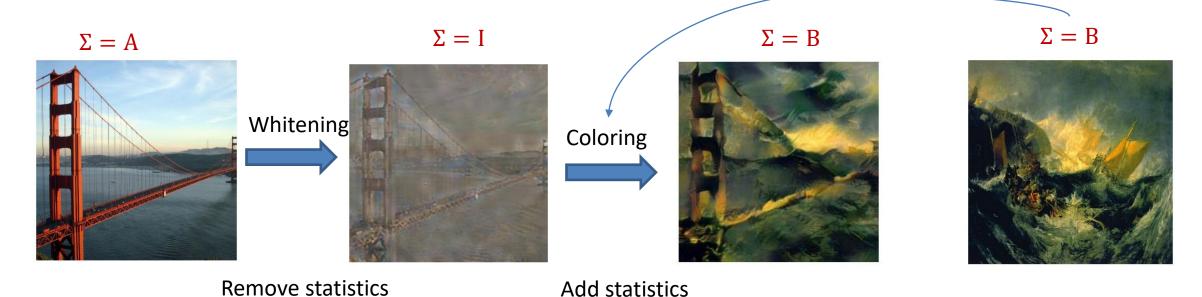
Statistcs B

Normalization Representation Recovery

• More general coloring transformation

$$\widetilde{\boldsymbol{X}} = \Psi_{LR}(\widehat{\boldsymbol{X}}) = \widehat{\boldsymbol{X}}\mathbf{W} + (\beta \mathbf{1}^T)$$

• Whitening + Coloring



Dynamic Generate NRR

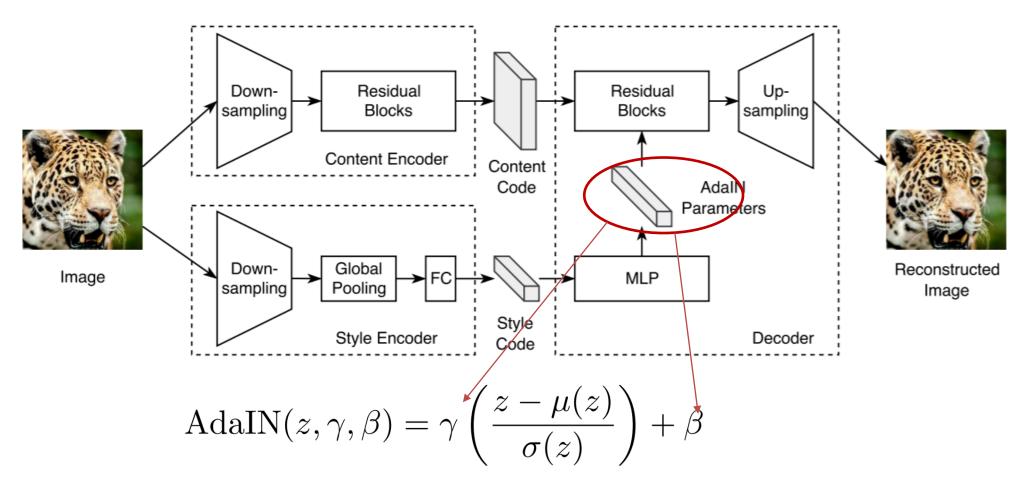
• Dynamic generate the affine parameters

$$\widetilde{\boldsymbol{X}} = \Psi_{DC}(\widehat{\boldsymbol{X}}) = \widehat{\boldsymbol{X}} \odot \Gamma_{\phi^{\gamma}} + B_{\phi^{\beta}}$$

where $\Gamma_{\phi\gamma} \in \mathbb{R}^{d\times m}$ and $B_{\phi\beta} \in \mathbb{R}^{d\times m}$ are generated by the subnetworks $\phi_{\theta_{\gamma}}^{\gamma}(\cdot)$ and $\phi_{\theta_{\beta}}^{\beta}(\cdot)$, respectively.

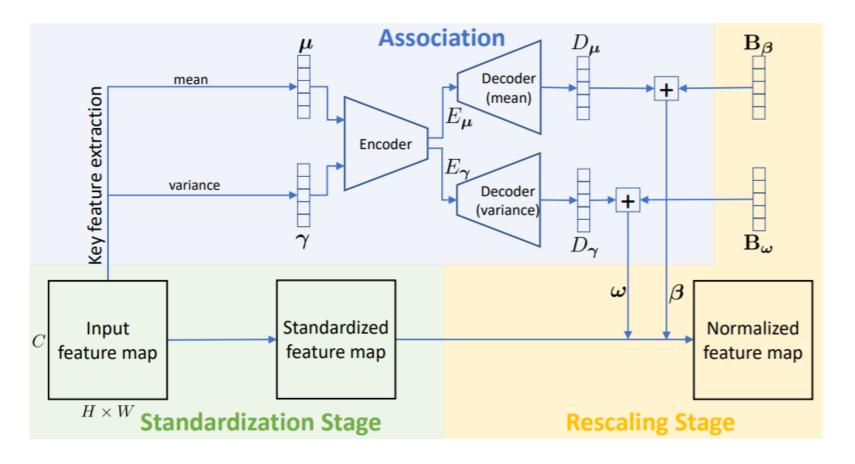
- Dynamic layer normalization [Kim et al, 2017]

Adaptive instance normalization

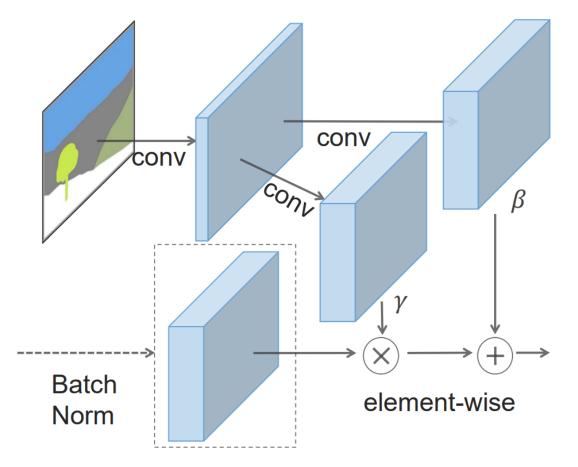


Multimodal Unsupervised Image-to-Image Translation [Huang et al, ECCV 2018]

• Instance level-meta norm

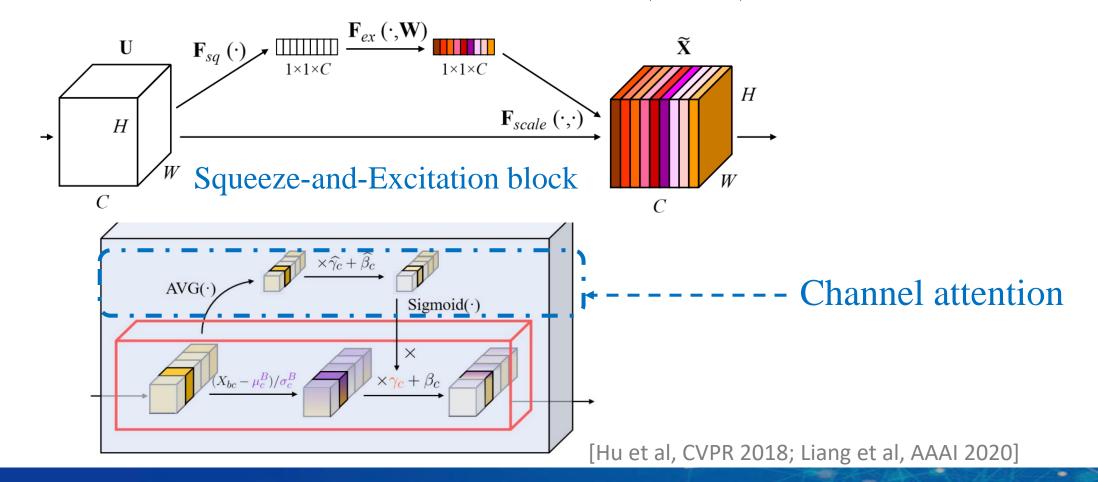


• Spatially Adaptive Denormalization (SPADE)

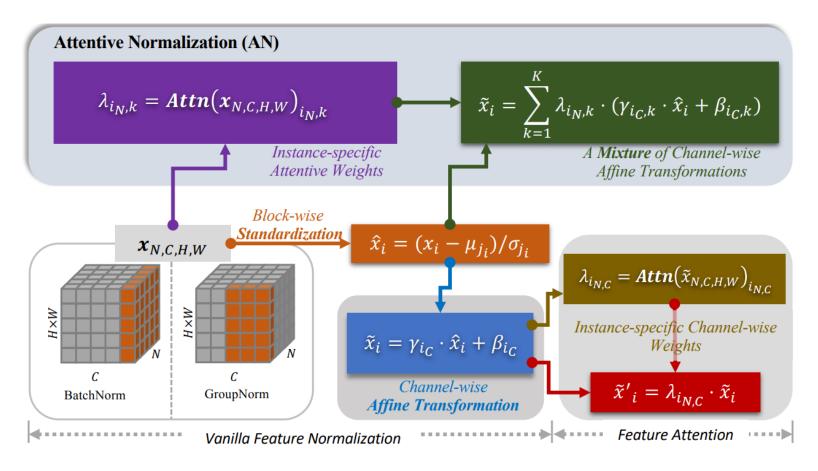


$$\beta, \gamma \in \mathbb{R}^{d \times h \times w}$$

- The explanation of channel attention
 - Instance Enhancement Batch Normalization (IEBN)



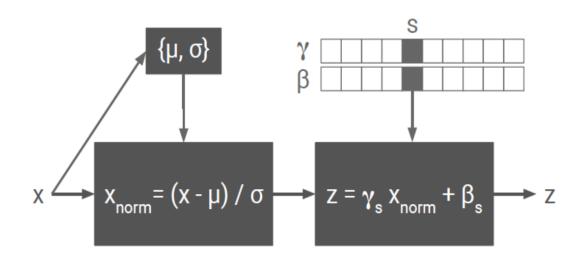
Attentive Normalization (AN)

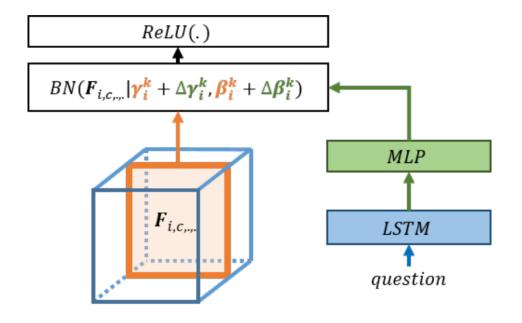


Side Information NRR

• Conditional instance normalization

Conditional batch normalization





Outline

- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Normalization Area Partitioning (NAP)
 - Normalization Operation (NOP)
 - Normalization Representation Recovery (NRR)
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

Multi-mode Normalization

Mode normalization

$$MN(x_n) \triangleq \alpha \left(\sum_{k=1}^{K} g_k(x_n) \frac{x_n - \mu_k}{\sigma_k} \right) + \beta$$



- Switchable Normalization (SN)
 - Combing BN, LN and IN

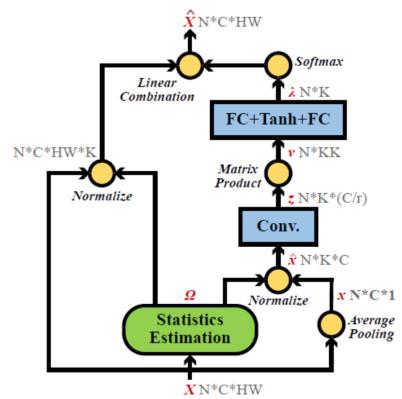
$$\hat{x}_{nchw} = \gamma \frac{x_{nchw} - (w_{IN}\mu_{IN} + w_{BN}\mu_{BN} + w_{LN}\mu_{LN})}{\sqrt{w_{IN}'\sigma_{IN}^2 + w_{BN}'\sigma_{BN}^2 + w_{LN}'\sigma_{LN}^2}} + \beta$$

$$w_k = \frac{e^{\lambda_k}}{\sum_{z \in \{IN, LN, BN\}} e^{\lambda_z}}, k \in \{IN, LN, BN\}$$

- Switchable Whitening (SW)
 - $-k \in \{BW, IW\} \text{ or } k \in \{BW, IW, IN, LN, BN\}$

• Exemplar Normalization

$$\widehat{m{X}}_n = \sum_k \ m{\gamma}^k (\ \lambda_n^k \ rac{m{X}_n - m{\mu}^k}{\sqrt{(m{\delta}^k)^2 + \epsilon}} \) + m{eta}^k$$



- Representative Batch Normalization
 - During training: Mini-batch statistics+ instance statistics
 - During inference: Population statistics + instance statistics

Batch-Instance Normalization

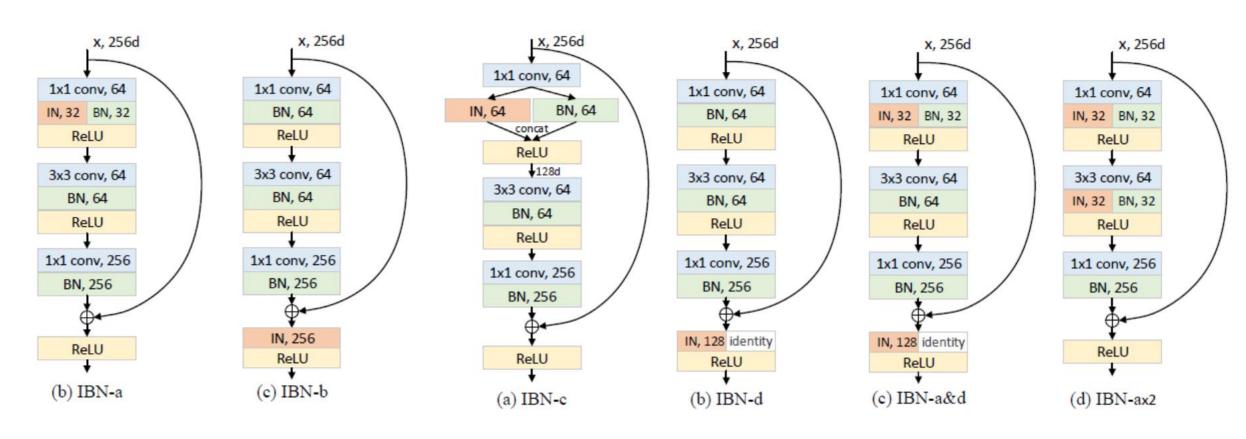
$$\mathbf{y} = \left(\rho \cdot \hat{\mathbf{x}}^{(B)} + (1 - \rho) \cdot \hat{\mathbf{x}}^{(I)}\right) \cdot \gamma + \beta,$$
$$\rho \leftarrow \text{clip}_{[0,1]} \left(\rho - \eta \Delta \rho\right)$$

Adaptive Layer-Instance Normalization (AdaLIN)

$$AdaLIN(a,\gamma,\beta) = \underbrace{\gamma\cdot(\rho\cdot\hat{a_I} + (1-\rho)\cdot\hat{a_L})}_{(\rho\cdot\hat{a_I} + \epsilon)} + \underbrace{\beta\cdot}_{(\rho\cdot\hat{a_I} + \epsilon)}$$

$$\hat{a_I} = \underbrace{\frac{a-\mu_I}{\sqrt{\sigma_I^2 + \epsilon}}}_{(\rho\cdot\hat{a_I} + \epsilon)}, \hat{a_L} = \underbrace{\frac{a-\mu_L}{\sqrt{\sigma_L^2 + \epsilon}}}_{(\rho\cdot\hat{a_L} + \epsilon)}$$
 Generated by a network

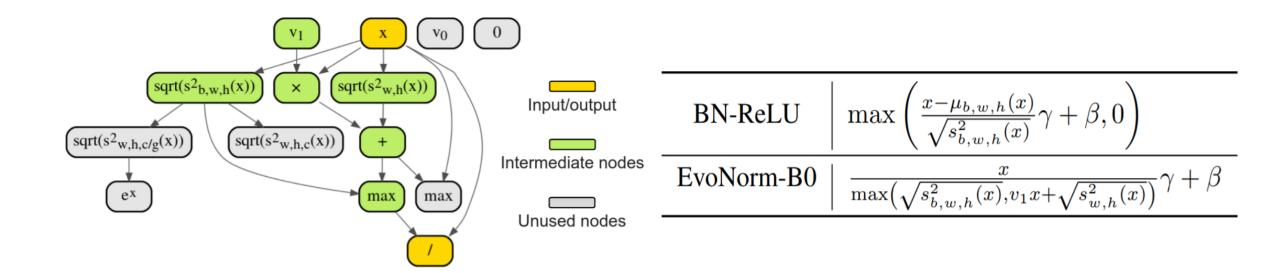
• Combination by design: IBN-Net



Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net [Pan et al, ECCV 2018]

Normalization by Learning

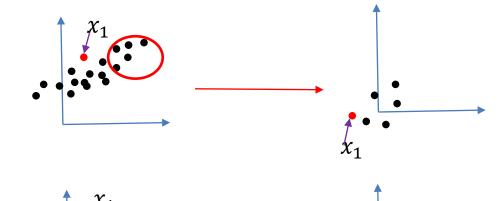
EvoNorm

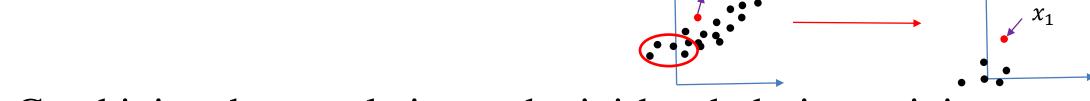


Outline

- Normalizing activations as functions
 - A Framework for decomposing normalization
 - Normalization Area Partitioning (NAP)
 - Normalization Operation (NOP)
 - Normalization Representation Recovery (NRR)
 - Multi-Mode and combinational normalization
 - BN for more robust estimation

- Small batch size problem of BN
 - Large Training-test discrepancy
 - Large stochasticity during training





- Combining the population and mini-batch during training
 - [Dinh et al, ICLR 2016]

$$\begin{cases} \hat{u} = (1 - \lambda)\hat{u} + \lambda u, \\ \hat{\sigma}^2 = (1 - \lambda)\hat{\sigma}^2 + \lambda \sigma^2 \end{cases}$$

- Combining the population and mini-batch during training
 - Batch Re-normalization

$$\begin{split} &\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ &\sigma_{\mathcal{B}} \leftarrow \sqrt{\epsilon + \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2}} \\ &r \leftarrow \text{stop_gradient}\left(\text{clip}_{[1/r_{\text{max}}, r_{\text{max}}]}\left(\frac{\sigma_{\mathcal{B}}}{\sigma}\right)\right) \\ &d \leftarrow \text{stop_gradient}\left(\text{clip}_{[-d_{\text{max}}, d_{\text{max}}]}\left(\frac{\mu_{\mathcal{B}} - \mu}{\sigma}\right)\right) \\ &\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sigma_{\mathcal{B}}} \cdot r + d \\ &y_{i} \leftarrow \gamma \, \widehat{x}_{i} + \beta \end{split}$$

Update moving averages

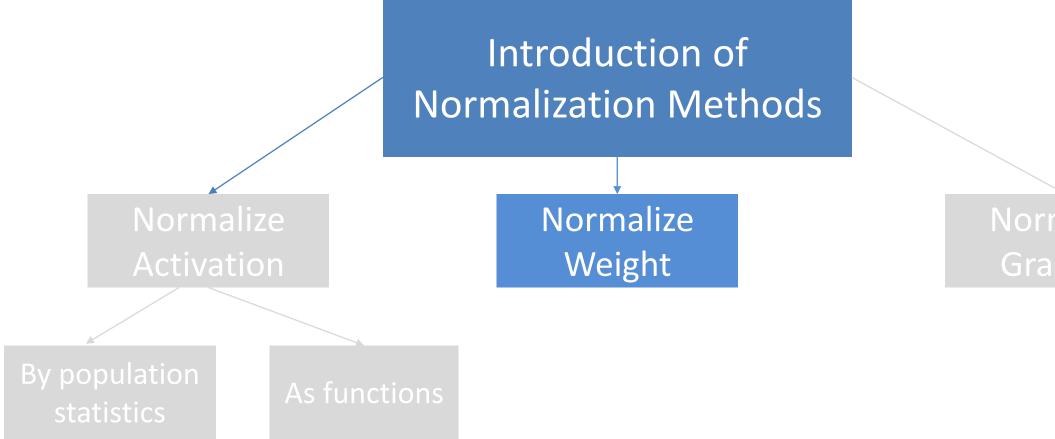
$$\mu := \mu + \alpha(\mu_{\mathcal{B}} - \mu)$$

$$\sigma := \sigma + \alpha(\sigma_{\mathcal{B}} - \sigma)$$

- Normalization as Functions Combining Population Statistics
 - Online normalization [Chiley et al, NeurIPS 2019]
 - Towards stabilizing batch statistics in backward propagation of batch normalization [Yan et al, ICLR 2020]
 - PowerNorm: rethinking batch normalization in transformers [Shen et al, ICML 2020]
 - Momentum batch normalization for deep learning with small batch size [Yong et al, ECCV 2020]
 - Double forward propagation for memorized batch normalization [Guo et al, AAAI 2018]
 - Cross-iteration batch normalization [Yao et al, CVPR 2021]

- Robust inference methods for BN
 - Estimating population statistics after training
 - Ioffe and Szegedy, 2015
 - Luo et al, 2018
 - Wu et al, 2021
 - Estimating batch normalization statistics for evaluation
 - EvalNorm [Singh et al, ICCV 2019]
 - [Summers and Dinneen, ICLR 2020]

Outline



Normalize Gradient

Normalizing Weights

- The general idea: normalize the activation implicitly during training
- Normalization Propagation [Arpit et al 2016; Shekhovtsov et al, 2018]
 - Normalize input: 0-mean and unit variance
 - Assuming W is orthogonal
 - Derivate the nonlinear dynamic, e.g. Relu:

Remark 1. (Post-ReLU distribution) Let
$$X \sim \mathcal{N}(0,1)$$
 and $Y = \max(0, X)$. Then $\mathbb{E}[Y] = \frac{1}{\sqrt{2\pi}}$ and $\operatorname{var}(Y) = \frac{1}{2}\left(1 - \frac{1}{\pi}\right)$

• Deriving the dynamics of activation by designing non-linearity [Shang et al, 2017; Klambauer et al, 2017]

Weight Normalization

- Target BN's drawback:
 - Unstable for small mini batch size
 - RNN
- Express weight as new parameters

$$\mathbf{w} = \frac{g}{||\mathbf{v}||} \mathbf{v} \qquad \qquad y = \phi(\mathbf{w} \cdot \mathbf{x} + b).$$

• Decouple direction and length of weight vectors

Centered Weight Normalization

- Motivated by initialization methods: zero-mean, stable variance [Glorot et al, AISTATS 2010; He et al, ICCV 2015]
- Constrained optimization problem: θ^*

- Solution by re-parameterization
 - Using proxy parameter v

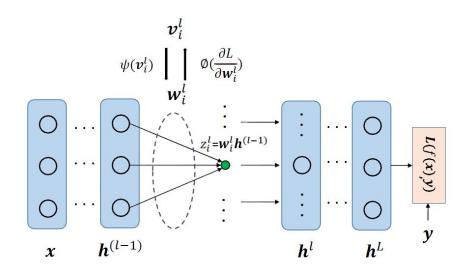
$$\mathbf{w} = \frac{\mathbf{v} - \frac{1}{d}\mathbf{1}(\mathbf{1}^T\mathbf{v})}{\|\mathbf{v} - \frac{1}{d}\mathbf{1}(\mathbf{1}^T\mathbf{v})\|}$$

– Gradient information:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \frac{1}{\|\hat{\mathbf{v}}\|} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{w}} - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \mathbf{w} \right) \mathbf{w}^T - \frac{1}{d} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \mathbf{1} \right) \mathbf{1}^T \right]$$

=
$$\underset{\theta}{\operatorname{arg\,min}} \mathbb{E}_{(\mathbf{x},\mathbf{y})\in D}[\mathcal{L}(\mathbf{y}, f(\mathbf{x}; \theta))]$$

s.t. $\mathbf{w}^T \mathbf{1} = 0 \text{ and } ||\mathbf{w}|| = 1$

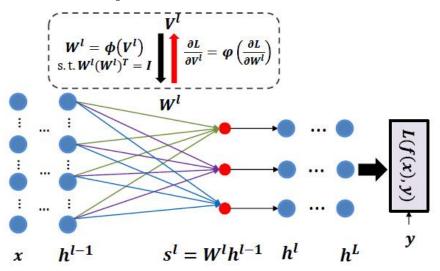


Orthogonal Weight Normalization

- Motivation: orthogonal initialization [Saxe et al, ICLR 2014; Mishkin et al, ICLR 2016]
 - Activation: ||h|| = ||x||
 - Gradient: $\|\frac{\partial L}{\partial x}\| = \|\frac{\partial L}{\partial h}\|$
- Constrained optimization problem over multiple Stiefel manifold:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in D} \left[\mathcal{L} \left(\mathbf{y}, f \left(\mathbf{x}; \theta \right) \right) \right]$$
s.t.
$$\mathbf{W}^l \in \mathcal{O}_l^{n_l \times d_l}, l = 1, 2, ..., L$$

Solution by re-parameterization



Normalizing Weights

• Constraints with optimization:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in D} [\mathcal{L}(\mathbf{y}, f(\mathbf{x}; \theta))]$$

s.t. $\Upsilon(\mathbf{W})$,

• Weight normalization:

$$\Upsilon(\mathbf{W}) = \{ \|\mathbf{W}_i\| = 1, i = 1, ..., d_{out} \}.$$

• Centered weight normalization/Scaled weight standardization:

$$\Upsilon(\mathbf{W}) = \{ \mathbf{W}_i^T \mathbf{1} = 0 \& ||\mathbf{W}_i|| = 1, i = 1, ..., d_{out} \}$$

• Weight standardization:

$$\Upsilon(\mathbf{W}) = \{ \mathbf{W}_i^T \mathbf{1} = 0 \& \| \mathbf{W}_i \| = \sqrt{d_{out}}, i = 1, ..., d_{out} \}$$

• Orthogonal weight normalization:

$$\Upsilon(\boldsymbol{W}) = \{ \boldsymbol{W} \boldsymbol{W}^T = \boldsymbol{I} \}.$$

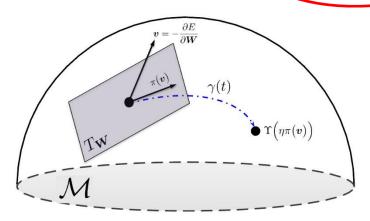
Training with Constraints

• Re-Parameterization

Regularization with an extra penalty

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in D} \left[\mathcal{L} \left(\mathbf{y}, f \left(\mathbf{x}; \theta \right) \right) \right] + \left(\frac{\lambda}{2} \sum_{i=1}^{D} \| \mathbf{W}_i^T \mathbf{W}_i - \mathbf{I} \|_F^2 \right)$$

• Riemannian optimization



Discussions with Normalizing Weights

- Advantages over activation normalizations
 - No extra cost during inference
 - Not sensitive to the batch size, compared to BN
- Disadvantages over activation normalizations
 - It is not stable, compared to activation normalizations
 - It needs to well design the gain parameters for satisfying criteria 1 (equivalent variance/distribution among layers).
 - The gain parameters depend on the network architectures [Huang et al 2017, Brock et al, 2021], thus it is more difficult to use in practice

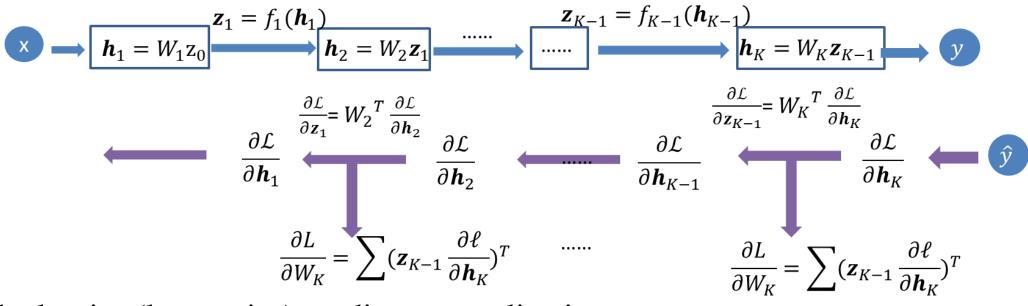
Outline

Normalize Activation

As functions

Normalize Weight Normalize Gradient

Normalizing Gradients



- Block-wise (layer-wise) gradient normalization [Yu et al, 2017]
 - $\bullet \quad \widehat{\frac{\partial L}{\partial W_K}} = \frac{\frac{\partial L}{\partial W_K}}{\|\frac{\partial L}{\partial W_K}\|_2}$
 - $\frac{\widehat{\partial L}}{\partial W_K} = \alpha \frac{\frac{\partial L}{\partial W_K} ||W_K||_2}{||\frac{\partial L}{\partial W_K}||_2}$ (adaptive for scale-invariant network)
- Layer-wise Adaptive Rate Scaling (LARS) [You et al 2017], for large batch training

Normalizing Gradients

- LAMB [You et al, 2020]
 - LARS + Adam, for large-batch BERT training

- LANS [Zheng et al, 2020]
 - Incorporate Nesterov's Momentum into LAMB, for large-batch BERT training
- Gradient centralization [Yong et al, 2020]

$$-\frac{\widehat{\partial L}}{\partial W_K} = (\mathbf{I} - \boldsymbol{e}\boldsymbol{e}^T) \frac{\partial L}{\partial W_K}$$

Q&A

