

CVPR 2021 Tutorial

Normalization Techniques in Deep Learning: Methods, Analyses and Applications

Lei Huang Beihang University, Beijing, China

Outline

01. Motivations of Normalization Techniques

02. Introduction of ormalization Methods

03. Analyses of Normalization

04. Applications of Normalization

Normalization for Application

• The general idea of learning invariant property and editing the distribution

Statistics of a set of images (domain)

Statistics of one image (style)

Discriminative model

Distribution alignment (Domain invariant learning)

Contrast removal (Style invariant learning)

Generative model

Edit domain information

Edit style information

Outline

Control domain

Control style

Training GANs

Efficient model

Adaptive Batch Normalization

t-SNE visualization of the mini-batch BN feature vector distributions in both shallow and deep layers, across different datasets. Each point represents the BN statistics in one mini-batch.

Algorithm 1 Adaptive Batch Normalization (AdaBN)

for neuron j in DNN do

Concatenate neuron responses on all images of target domain t: $\mathbf{x}_j = [\dots, x_j(m), \dots]$

Compute the mean and variance of the target do-

main:
$$\mu_j^t = \mathbb{E}(\mathbf{x}_j^t)$$
, $\sigma_j^t = \sqrt{\operatorname{Var}(\mathbf{x}_j^t)}$.

end for

for neuron j in DNN, testing image m in target domain do

Compute BN output
$$y_j(m) := \gamma_j \frac{\left(x_j(m) - \mu_j^t\right)}{\sigma_j^t} + \beta_j$$
 end for

- Domain alignment
 - Align during training,
 - Combining semi-supervised loss (uncertainty on target)

- Domain Specific BN
 - Align during training, specific to each domain
 - Pseudo label

- Whitening operation for alignment
 - Align during training, specific to each domain
 - Using whitening for align

- Transferable normalization
 - Align during training,
 specific each domain
 - Get the information for transfer from other target statistics

Normalization for Domain Generalization

- Domain-specific optimized normalization (DSON)
 - Normalized by a weighted average of multiple normalization statistics

Normalization for Domain Generalization

- For domain generalization
 - Instance selective whitening

RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening [Tsai et al, CVPR 2021]

Normalization for Domain Generalization

Batch normalization embeddings

Multi-Source Domain Alignment Layer

Normalization for Corruption Robust

- Estimate BN statistics during test to improve performance for corruption
 - Improving robustness against common corruptions by covariate shift adaptation [Schneider et al, 2020]
 - Revisiting Batch Normalization for Improving Corruption Robustness
 [Benz et al, 2020]

- BN's train mode for test (mini-batch test)
 - Evaluating prediction-time batch normalization for robustness under covariate shift
 [Nado et al, 2020]

Normalization for Corruption Robust

- Tent: fully test-time adaptation
 - Source-free adaptation,
 - Entropy minimization on test data

Predictions with lower entropy have lower error rates on corrupted CIFAR-100-C. Certainty can serve as supervision during testing.

Tent: Fully Test-Time Adaptation by Entropy Minimization [Wang et al, ICLR 2021]

Normalization for Corruption Robust

Matching batch normalization statistics

Normalization for Adversarial Robust

• Gated Batch Normalization (GBN): defending multiple

adversarial perturbations

Towards Defending Multiple Adversarial Perturbations via Gated Batch Normalization [Liu et al, 2020]

Normalization for Person Re-identification

- Camera-based Batch Normalization
 - View each camera as a "domain

Rethinking the Distribution Gap of Person Reidentification with Camera-based Batch Normalization [Zhuang et al 2020]

- Modality Batch Normalization
 - View each modality as a "domain"

Bridging the Distribution Gap of Visible-Infrared Person Re-identification with Modality Batch Normalization [Li et al, 2021]

Normalization for Stereo Matching

- Domain-invariant stereo matching networks [Zhang et al, CVPR 2020]
 - Domain generalization: for learning domain invariant stereo matching
 - Domain-invariant normalization: IN + Position L2-Norm

(a) Training Scenes

(b) Test Scenes

Domain Norm

Normalization for Multi-task Learning

• Share parameters + specific learned weights

Efficient Multi-Domain Learning by Covariance Normalization [Li and Vasconcelos, 2019]

Universal representations: The missing link between faces, text, planktons, and cat breeds [Bilen and Vedaldi, 2017]

Normalization for Multi task Learning

• BN's mean/variance + scalar/bias as per task

Outline

Control domair

Control style

Training GANs

Efficient model

- Content representation
 - Higher layers activations in neural networks
 - Style representation
 - Lower layers activation in neural networks
 - Gram matrix

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l.$$

- Instance Normalization
 - No data dependency
 - Remove instance-specific contrast information from the content image

Condition Instance Normalization (CIN)

A Learned Representation For Artistic Style [Dumoulin et al, ICLR 2017)]

Adaptive instance normalization (Huang et al, ICCV 2017)

Whitening Instance Norm (WIN)

Universal style transfer via feature transforms [Li et al, NeurIPS 2017]

• Dynamic Instance Normalization (DIN)

Image Translation

Adaptive instance normalization

Multimodal Unsupervised Image-to-Image Translation [Huang et al, ECCV 2018]

Image Translation

group-wise whitening-and-coloring transformation

Image-to-image translation via group-wise deep whitening-and-coloring transformation[Cho et al, CVPR 2019]

Image Inpainting

• Region Normalization

Outline

Control domain

Control style

Training GANs

Efficient model

Training GANs

• Control the pace of learning of discriminator

Training GANs

• Control the pace of learning of discriminator

Spectral normalization for generative adversarial networks [Miyato et al 2018]

Controllable Orthogonalization in Training DNNs [Huang et al, 2020]

Conditional GANs

• A style-based generator architecture for generative adversarial networks [Karras et al, 2019]

$$AdaIN(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

Conditional GANs

Self modulation for generative adversarial networks

$$oldsymbol{h}_\ell' = oldsymbol{\gamma}_\ell(oldsymbol{z}) \odot rac{oldsymbol{h}_\ell - oldsymbol{\mu}}{oldsymbol{\sigma}} + oldsymbol{eta}_\ell(oldsymbol{z})$$

Outline

Control domain

Control style

Training GANs

Efficient model

• Pruning: exploit the channel-wise scaling layers in BN

Adaptive BN for Pruning

$$\begin{cases} \hat{u} = (1 - \lambda)\hat{u} + \lambda u, \\ \hat{\sigma}^2 = (1 - \lambda)\hat{\sigma}^2 + \lambda \sigma^2 \end{cases}$$

Population statistics needs to be re-calculated after pruning

- Slimmable network
 - Switchable batch normalization (SBN)

- Network quantization
 - Noise-Aware BatchNorm

$$F^Q(w + \Delta w) \approx F(w)$$

Robust Processing-In-Memory Neural Networks via Noise-Aware Normalization [Tsai et al, 2020]

Open Discussion

- How to validate BN/IN effectively learning the invariant representation?
- The statistical mechanism of normalization can be used in NLP tasks?
- Why BN/GN in CNN/CV, while LN in Transformer/NLP?

• Possible to make network architecture larger in deep reinforcement learning, by using normalization?

Q&A

